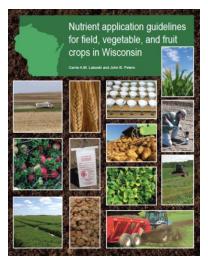
How to read a UW farm soil report

Robert Florence

Lab Director

Soil and Forage Analysis Lab

Marshfield, WI



Introduction

Use a Wisconsin Dept. of Agriculture, Trade and Consumer Protections (DATCP) certified lab.

Recommendations are based off University of Wisconsin publication Nutrient application guidelines for field, vegetable, and fruit crops in

Wisconsin A2809.

Information

Information

COOPERATIVE EXTENSION Samples Analyzed By: UW Soil & Plant Analysis Lab SOIL TEST REPORT University of Wisconsin-Extension University of Wisconsin-Madison 8452 Mineral Point Road Results also available on-line at http://uwlab.soils.wisc.edu/reports lab number: 120,46 access code: 9xqfc Verona, WI 53593 (608) 262-4364 LAB #: 12346 This Report is for: Bucky Badger County Dane 556996 Date Rece Date Pro 9/1/2011 9/6/2011 NUTRIENT RECOMMENDATIONS Acres Plow DepthIrriga 10 7" No Slope 0% Cropping Sequence Yield Goal egume N Manure N P205 Soil Name Antigo Corn, grain 131-150 bu 0 40 0 0 0 40 Soybean, grain 46-55 bu 35 35 Field Name Alfalfa, seeding 1-2.5 ton 30 105 0 0 30 105 0 0 0 0 Alfalfa, established 4.6-5.5 ton 0 300 300

The lime required for this rotation to reach pH 6 3 is 12 T/a of 60-69 lime or 9 T/a of 80-89 lime.

	N:Corn Price Ratio (\$/lb N:\$/bu)											
Medium/Low Yield Potential Soils		0.05		0.10	1	0.15	0.20					
Wiedlitti Low Tield Foteritial Soils	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range				
			7	lb N/a (Tot	al to Apply)2		1					
Corn, Forage legumes, Leguminous vegetables, Green manures ³	125	110-140	110	100-115	100	95-110	95	85-100				
Soybean, Small grains ⁴	110	90-125	85	70-95	70	60-80	60	50-70				

6.0 1.9 34

no crop

Guidelines for choosing an appropriate N application rate for corn (grain)

- 1) If there is more than 50% residue cover at planting, use the upper end of the range.
 2) For small grains grown on medium and fine textured soils, the mid to low end of the profitable range is the most appropriate.
- 3) If 100% of the N will come from organic sources, use the top end of the range. In addition, up to 20 lb N/a in starter fertilizer may be applied in this situation.
- 4) For medium and fine textured soils with 10% or more organic matter, use the low end of the range; for medium and fine textured soils with less than 2% organic matter, use the high end of the range.
- 5) If there is a likelihood of residual N, then use the low end of the range or use the high end of the range and subtract preplant nitrate test (PPNT) credits. 6) For corn following small grains on medium and fine textured soils, the middle to low end of the range is most appropri

For more information on the new N application rate guidelines for corn see http://uwlab.soils.wisc.edu/pubs/MRTN/ ADDITIONAL INFORMATION

Lime recommendation may not achieve desired pH in 3 years. Retest then and apply as recommended

If lime has been applied in the last two years, more lime may not be needed due to incomplete reaction.

Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer.

This soil should be monitored more closely because it has a relatively low potassium buffering capacity

Starter fertilizer (e.g. 10+20+20 lbs N+P₂O₂+K₂O/a) is advisable for row crops on soils slow to warm in the spring.

Year 1: If corn is harvested for silage instead of grain apply extra 90 lbs K₂O per acre to next crop.

If alfalfa will be maintained for more than three years, increase recommended $K_{\epsilon}O$ by 20% each year.

							TEST IN	TERPRE	TATION							
Cropping S	equence	Ver	y Low		Low	j.	Haraman .	Optimum	0)0510)01-	H	lìgh		Very High		Ex	cessive
Corn, grai	n		PPPPPPP KKKKKKK							PPPPPPP	PPPPP	PPPPPPP	PPPPPP	PPPPPF	PPPPPP	PPPP
Soybean,	grain									PPPPPPP KKKKKKK		PPPPPPP	PPPPPP	PPPPPP	PPPPPP	PPPPPI
Alfalfa, se	eding		PPPPPPP KKKKKKK						PPPPPF	PPPPPPP	PPPPP	PPPPPPPP	PPPPPP	PPPPPF	PPPPPP	PPPP
Alfalfa, es	tablished		PPPPPPP KKKKKKK						PPPPPF	PPPPPPP	PPPPF	PPPPPPP	PPPPPP	PPPPPF	PPPPPP	PPPP
Rotation p	Н	XXX	XXXX													
							LABORA	TORY AN	IALYSIS		Gent-					
Sample Identification	Soil pH	O.M %	Phosphorus ppm	Potassium ppm	60-69 Lime Reg (T/a)	Calcium ppm	Magnesium ppm	Est CEC (cmol/kg)	Baron ppm	Manganese ppm	Zinc	Sulfate-Sulfur pom	Sulfur Avail.	Texture Code	Sample Density	Buffer pH
1	6.0	1.9	34	128	36.8					1,000		1000		2	1.00	5.6

Rate is the N rate that provides the maximum return to N (MRTN). Range is the range of profitable N rates that provide an economic return to N within \$1/a of the MRTN.
These rates are for total N applied including N in stater fertilizer and N used in herbicide applications.
Subtract N credits for frage legislamums, eliguminous vegetables, green manures and animal manures. This includes 1st, 2nd and 3rd year credits where applicable. Do not subtract N credits for leguminous vegetables on sand and loamy send soils.
Subtract N credits for animal manures and 2nd year forage legumes.

Information

Check That your information is correct

lime recommendations are based off Plow depth, crop rotation, and soil type

N rate adjustments are based off previous crop, soil series, county, irrigation, and tile drainage

P and K nutrient recommendations are based off soil type

Samples Analyzed By:

SOIL TE

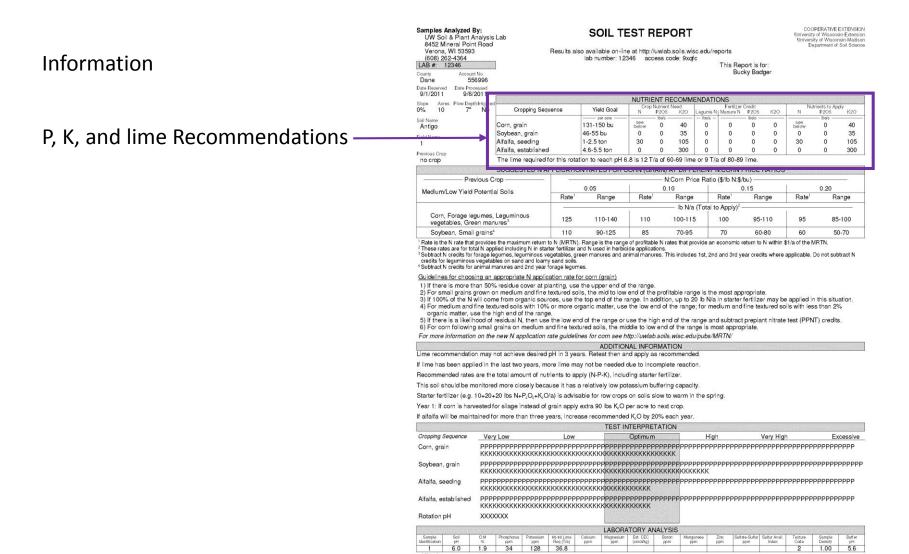
UW Soil and Forage Lab 2611 Yellowstone Dr.

Marshfield, WI 54449 715-387-2523

sults also available on-line : lab number: 1234

LAB #: 12	346
County Dane	Account No. 556996
Date Received 9/1/2011	Date Processed 9/6/2011

9/1/2		9/6/2	5-7-7:5-7:	
Slope 0%	Acres 10	Plow Depti 7"	nIrrigated No	
Soil Nar Ant ig				(
Field Na	ıme			5
Previous	з Сгор			F


no crop

Cropping Sequence	Yield Goal
	—— per acre ——
Corn, grain	131-150 bu
Soybean, grain	46-55 bu
Alfalfa, seeding	1-2.5 ton
Alfalfa, established	4.6-5.5 ton

The lime required for this rotation to reach pH 6.8

Nutrient Recommendations

6.0 1.9 34 128

Nutrient Recommendations

		NUTRI	ENTRE	COMM	IENDATIO	ONS					
Cropping Sequence	Yield Goal	Crop N	Nutrient N P2O5	Veed K2O	Legume N	Fertilzer Manure N	Credit P2O5	K20	N Ni	trients to App P2O5	ply K2O
	— per acre —	- 12	- Ibs/a -		— lbs/a —	3	- lbs/a -		V3653951	- Ibs/a -	
Corn, grain	131-150 bu	below	0	40	0	0	0	0	see	0	40
Soybean, grain	46-55 bu	0	0	35	0	0	0	0	0	0	35
Alfalfa, seeding	1-2.5 ton	30	0	105	0	0	0	0	30	0	105
Alfalfa, established	4.6-5.5 ton	0	0	300	0	0	0	0	0	0	300

The lime required for this rotation to reach pH 6.8 is 12 T/a of 60-69 lime or 9 T/a of 80-89 lime.

Nutrient needs — Based off soil test values and crop removal rates

Fertilizer credits — From previous crop or manure applications

Nutrients to apply – Difference between nutrient needs and fertilizer credits Given in lbs. of N, P_2O_5 or K_2O equivalents / acre

Lime requirement – To the most limiting crop in rotation

Based off current pH, buffer pH, and target pH

Given in Tons/acre of 60-69 or 80-89 grade lime

Nitrogen Rates

8452 Mineral Point Road Verona, WI 53593

Date Received Date Processed

Information

P, K, and lime Recommendations

N rates

Samples Analyzed By: SOIL TEST REPORT UW Soil & Plant Analysis Lab

Results also available on-line at http://uwlab.soils.wisc.edu/reports

This Report is for: **Bucky Badger** COOPERATIVE EXTENSION

lab number: 12346 access code: 9xqfc

9/1/2		9/6/20		Skindovani i Digitali nive	ROUND STATE OF THE	NUTR	ENT RE	COMM	ENDATIO	SNC	Extension in	A STANK			
Slope 0%	10	Plow Depth I 7"	No	Cropping Sequence	Yield Goal	Oro N	Nutrient 1 P205	leed K20		Fertilzer Manure N	Credit P2O5	K20	N N	trients to Ap P2O5	ply K2O
Soil Nar Antig	jo			Corn, grain Soybean, grain	131-150 bu 46-55 bu	see below 0	0 0	40 35	0 0	0	0 0	0	see below 0	0 0	40 35
Field Na 1	ame			Alfalfa, seeding	1-2.5 ton	30	0	105	0	0	0	0	30	0	105
Previou no c				Alfalfa, established The lime required for this ro	4.6-5.5 ton station to reach pH	0 6.8 is 12	0 T/a of 60	300 0-69 lim	0 ie or 9 T/a	0 a of 80-89	0 lime.	0	0	0	300

	s s			N:Corn Price R	atio (\$/lb N:\$.	/bu)			
Medium/Low Yield Potential Soils		0.05		0.10		0.15	0.20		
Medium/Low Field Fotential Soils	Rate ¹	Range	Rate	Range	Rate ¹	Range	Rate ¹	Range	
	-		7	b N/a (To	tal to Apply)2		1		
Corn, Forage legumes, Leguminous vegetables, Green manures ³	125	110-140	110	100-115	100	95-110	95	85-100	
Soybean, Small grains ⁴	110	90-125	85	70-95	70	60-80	60	50-70	

These rates are for total A applied including in a function of the MRTN.

These rates are for total An applied including in a faster fertilizer and it used in historical explications.

Subtract N credits for forage legumes, leguminous vegetables, green manures and animal manures. This includes 1st, 2nd and 3rd year credits where applicable. Do not subtract N credits for forage legumes, leguminous vegetables on sand and loamy sand soils.

Subtract N credits for animal manures and 2nd year forage legumes.

34

Guidelines for choosing an appropriate N application rate for corn (grain)

1) If there is more than 50% residue cover at planting, use the upper end of the range.

2) For small grains grown on medium and fine textured soils, the mid to low end of the profitable range is the most appropriate.

3) If 100% of the N will come from organic sources, use the top end of the range. In addition, up to 20 lb N/a in starter fertilizer may be applied in this situation. 4) For medium and fine textured soils with 10% or more organic matter, use the low end of the range; for medium and fine textured soils with less than 2%

organic matter, use the high end of the range.

5) If there is a likelihood of residual N, then use the low end of the range or use the high end of the range and subtract preplant nitrate test (PPNT) credits. 6) For corn following small grains on medium and fine textured soils, the middle to low end of the range is most appropriate

For more information on the new N application rate guidelines for corn see http://uwlab.soils.wisc.edu/pubs/MRTN/

ADDITIONAL INFORMATION

Lime recommendation may not achieve desired pH in 3 years. Retest then and apply as recommended

If lime has been applied in the last two years, more lime may not be needed due to incomplete reaction.

Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer

This soil should be monitored more closely because it has a relatively low potassium buffering capacity.

Starter fertilizer (e.g. 10+20+20 lbs N+P2Os+K2O/a) is advisable for row crops on soils slow to warm in the spring. Year 1: If corn is harvested for silage instead of grain apply extra 90 lbs K₂O per acre to next crop.

If alfalfa will be maintained for more than three years, increase recommended K₂O by 20% each year

							TEST IN	ITERPRE	TATION							
Cropping S	Sequence	Ver	y Low		Low		luaninas.	Optimum) Augusti	H	ligh		Very High	1	Ex	cessive
Corn, grai	in		PPPPPPP KKKKKKK							PPPPPPP	PPPPP	PPPPPPP	PPPPPP	PPPPPP	PPPPPP	PPP
Soybean,	grain									PPPPPPP KKKKKKK		PPPPPPP	PPPPPP	PPPPPP	PPPPPP	PPPPI
Alfalfa, se	eeding		PPPPPPP KKKKKKK						PPPPPP	PPPPPPP	PPPPP	PPPPPPP	PPPPPPF	PPPPPP	PPPPPPI	PPPP
Alfalfa, es	stablished		PPPPPPP KKKKKKK						PPPPPF	PPPPPPP	PPPPP	PPPPPPP	PPPPPP	PPPPPP	PPPPPP	PPP
Rotation p	Н	XXX	XXXX													
La de la co							LABORA	TORY A	VALYSIS		SERVE .					
Sample Identification	Soil pH	O.M %	Phosphorus ppm	Potassium ppm	60-69 Lime Reg (T/a)	Calcium ppm	Magnesium ppm	Est. CEC (cmoVkg)	Boron ppm	Manganese ppm	Zinc ppm	Sulfate-Sulfur ppm	Sulfur Avail. Index	Teoture Code	Sample Density	Buffer pH
1	6.0	1.9	34	128	36.8									2	1.00	5.6

Nitrogen Rates

SUGGESTED N	APPLICATION	RATES FOR C	ORN (GRAIN	N) AT DIFFEREN	NT N:CORN	PRICE RATIOS					
Previous Crop	N:Corn Price Ratio (\$/lb N:\$/bu)										
Medium/Low Yield Potential Soils		0.05	ľ	0.10	20	0.15	0.20				
Wedium/Low Held Potential Solls	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range			
	**		11:	- lb N/a (Tot	al to Apply)2		ļ.				
Corn, Forage legumes, Leguminous vegetables, Green manures ³	125	110-140	110	100-115	100	95-110	95	85-100			
Soybean, Small grains ⁴	110	90-125	85	70-95	70	60-80	60	50-70			

¹ Rate is the N rate that provides the maximum return to N (MRTN). Range is the range of profitable N rates that provide an economic return to N within \$1/a of the MRTN.

Guidelines for choosing an appropriate N application rate for corn (grain)

- 1) If there is more than 50% residue cover at planting, use the upper end of the range.
- 2) For small grains grown on medium and fine textured soils, the mid to low end of the profitable range is the most appropriate.
- 3) If 100% of the N will come from organic sources, use the top end of the range. In addition, up to 20 lb N/a in starter fertilizer may be applied in this situation.
- 4) For medium and fine textured soils with 10% or more organic matter, use the low end of the range; for medium and fine textured soils with less than 2% organic matter, use the high end of the range.
- 5) If there is a likelihood of residual N, then use the low end of the range or use the high end of the range and subtract preplant nitrate test (PPNT) credits.
- 6) For corn following small grains on medium and fine textured soils, the middle to low end of the range is most appropriate.

For more information on the new N application rate guidelines for corn see http://uwlab.soils.wisc.edu/pubs/MRTN/

For crops other than corn grain and wheat, a single N rate is given.

² These rates are for total N applied including N in starter fertilizer and N used in herbicide applications.

³ Subtract N credits for forage legumes, leguminous vegetables, green manures and animal manures. This includes 1st, 2nd and 3rd year credits where applicable. Do not subtract N credits for leguminous vegetables on sand and loamy sand soils.

⁴ Subtract N credits for animal manures and 2nd year forage legumes.

Comments

556996

Information

P, K, and lime Recommendations

N rates

Comments

Samples Analyzed By: SOIL TEST REPORT UW Soil & Plant Analysis Lab

8452 Mineral Point Road Verona, WI 53593 Results also available on-line at http://uwlab.soils.wisc.edu/reports lab number: 12346 access code: 9xqfc

COOPERATIVE EXTENSION

This Report is for: **Bucky Badger**

9/1/20				MILITO	ENT DE	0014	IENDATIO	DNC	Control to the State of the Sta			anani dan sebagai	
Slope 0%	Acres Plow DepthIrrig		Yield Goal		p Nutrient 1 P205		T	Fertilzer Manure N	Credit P2O5	K20	N No	trients to App P2O5	oly K2O
Soil Nam Antig	0	Corn, grain Soybean, grain	131-150 bu 46-55 bu	see below	0 0	40 35	0 0	0	0 0	0	see below	0 0	40 35
Field Nar 1	ne	Alfalfa, seeding Alfalfa, established	1-2.5 ton 4.6-5.5 ton	30	0	105	0	0	0	0	30	0	105
Previous no cre		The lime required for this re	0 1000000000000000000000000000000000000	6.8 is 12	T/a of 60			of 80-89	lime.	0	U	- 0	300

SUGGESTED N	APPLICATION	RATES FOR C	A STATE OF THE PARTY OF THE PAR	N:Corn Price R				
Medium/Low Yield Potential Soils		0.05		0.10	v 2000 100	0.15	1 0	0.20
Medium/Low Yield Potential Soils	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range
	-			b N/a (Tot	tal to Apply)2		1	
Corn, Forage legumes, Leguminous vegetables, Green manures ³	125	110-140	110	100-115	100	95-110	95	85-100
Soybean, Small grains⁴	110	90-125	85	70-95	70	60-80	60	50-70

Rate is the N rate that provides the maximum return to N (MRTN). Range is the range of profitable N rates that provide an economic return to N within \$1/a of the MRTN.

These rates are for total N applied including N in starter fertilizer and N used in herbicide applications.
Subtract N credits for forage legumes, Egypunnious vegetables, green manures and animal manures. This includes 1st, 2nd and 3rd year credits where applicable. Do not subtract N credits for leguminous vegetables on sand and loamy sand soils.

Subtract N credits for animal manures and 2nd year forage legumes.

1 6.0 1.9 34 128 36.8 34

Guidelines for choosing an appropriate N application rate for corn (grain)

1) If there is more than 50% residue cover at planting, use the upper end of the range.

2) For small grains grown on medium and fine textured soils, the mid to low end of the profitable range is the most appropriate.

3) If 100% of the N will come from organic sources, use the top end of the range. In addition, up to 20 lb N/a in starter fertilizer may be applied in this situation. 4) For medium and fine textured soils with 10% or more organic matter, use the low end of the range; for medium and fine textured soils with less than 2%

organic matter, use the high end of the range.

5) If there is a likelihood of residual N, then use the low end of the range or use the high end of the range and subtract preplant nitrate test (PPNT) credits. 6) For corn following small grains on medium and fine textured soils, the middle to low end of the range is most appropriate

For more information on the new N application rate guidelines for corn see http://uwlab.soils.wisc.edu/pubs/MRTN/

ADDITIONAL INFORMATION

Lime recommendation may not achieve desired pH in 3 years. Retest then and apply as recommended

If lime has been applied in the last two years, more lime may not be needed due to incomplete reaction.

Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer

This soil should be monitored more closely because it has a relatively low potassium buffering capacity.

Starter fertilizer (e.g. 10+20+20 lbs N+P2Os+K2O/a) is advisable for row crops on soils slow to warm in the spring

Year 1: If corn is harvested for silage instead of grain apply extra 90 lbs K_oO per acre to next crop.

		DESCRIPTION OF THE PARTY OF THE			TEST I	VIERPRE	TATION			Service Constitution			March Stock	West Class
Cropping Sequence	Very Low		Low	ě.	Joseph	Optimum	roughtous:	_ F	ligh		Very High	1	Ex	cessive
Corn, grain	PPPPPPPPP KKKKKKKK							PPPPPPP	PPPPP	PPPPPPP	PPPPPPF	PPPPPF	PPPPPPP	PPPP
Soybean, grain	PPPPPPPPP KKKKKKKK									PPPPPPP	PPPPPP	PPPPPP	PPPPPP	PPPPPI
Alfalfa, seeding	PPPPPPPPP KKKKKKKK						PPPPPF	PPPPPPP	PPPPP	PPPPPPP	PPPPPPF	PPPPPP	PPPPPPP	PPPP
Alfalfa, established	PPPPPPPPP KKKKKKKK						PPPPPF	PPPPPPP	PPPPP	PPPPPPP	PPPPPP	PPPPPP	PPPPPPP	PPPP
Rotation pH	XXXXXXX													
					LABORA	ATORY A	VALYSIS							
Sample Soil Identification pH	O.M Phosphor % ppm	ppm Potassium	60-69 Lime Reg (T/a)	Calcium	Magnesium pom	Est. CEC (cmol/kg)	Boron	Manganese	Zinc	Sulfate-Sulfur pom	Sulfur Avail.	Teoture Code	Sample Density	Buffer pH

Comments

ADDITIONAL INFORMATION

Lime recommendation may not achieve desired pH in 3 years. Retest then and apply as recommended.

If lime has been applied in the last two years, more lime may not be needed due to incomplete reaction.

Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer.

This soil should be monitored more closely because it has a relatively low potassium buffering capacity.

Starter fertilizer (e.g. 10+20+20 lbs N+P₂O₅+K₂O/a) is advisable for row crops on soils slow to warm in the spring.

Year 1: If corn is harvested for silage instead of grain apply extra 90 lbs K₂O per acre to next crop.

If alfalfa will be maintained for more than three years, increase recommended K2O by 20% each year.

Important notes on:

lime and nutrient applications
Alternatives one may choose
Note on rotational considerations
Can save you time and money so please read

Test Results

8452 Mineral Point Road Verona, WI 53593

(608) 262-4364

Information

P, K, and lime Recommendations

N rates

Comments

Test results

Samples Analyzed By: SOIL TEST REPORT UW Soil & Plant Analysis Lab

Results also available on-line at http://uwlab.soils.wisc.edu/reports lab number: 12346 access code: 9xqfc

COOPERATIVE EXTENSION

LAB #	12346							This Rep					
County	Account No. 556996							Bud	ky Bad	ger			
9/1/20													
Clone	Acres Plow Depth Irrigate			NUTRI	ENT RE	COMM	IENDATIO	SNC					
Slope Acres Plow I 0% 10 Soil Name		Cropping Sequence	Yield Goal	Crop Nutrient Need			Fertilzer Credit				Nutrients to Apply		
076	10 / 100	Cropping Sequence	Tield Goal	N	P205	K20		Manure N	P205	K20	N	P205	K20
			per acre	500	— Ibs/a —	0.220	— Ibs/a —		— Ibs/a —	9025	599	— Ibe/a —	100
Antig	0	Corn, grain	131-150 bu	below	0	40	0	0	0	0	below	0	40
Field Nar		Soybean, grain	46-55 bu	0	0	35	0	0	0	0	0	0	35
1	me	Alfalfa, seeding	1-2.5 ton	30	0	105	0	0	0	0	30	0	105
Previous	Cmn	Alfalfa, established	4.6-5.5 ton	0	0	300	0	0	0	0	0	0	300
no cre		The lime required for this ro	station to reach pH	6.8 is 12	T/a of 60)-69 lim	e or 9 T/a	of 80-89	lime.		•		

Previous Crop	N:Corn Price Ratio (\$/lb N:\$/bu)										
Medium/Low Yield Potential Soils		0.05	T .	0.10		0.15	0.20				
Medium/Low Field Fotential Soils	Rate ¹	Range	Rate	Range	Rate ¹	Range	Rate ¹	Range			
	-		,	b N/a (Tot	al to Apply)2						
Corn, Forage legumes, Leguminous vegetables, Green manures ³	125	110-140	110	100-115	100	95-110	95	85-100			
Soybean, Small grains ⁴	110	90-125	85	70-95	70	60-80	60	50-70			

Rate is the N rate that provides the maximum return to N (MRTN). Range is the range of profitable N rates that provide an economic return to N within \$1/a of the MRTN.

These rates are for total N applied including N in starter fertilizer and N used in herbicide applications.
Subtract N credits for forage legumes, Egypunnious vegetables, green manures and animal manures. This includes 1st, 2nd and 3rd year credits where applicable. Do not subtract N credits for leguminous vegetables on sand and loamy sand soils.

Subtract N credits for animal manures and 2nd year forage legumes.

Guidelines for choosing an appropriate N application rate for corn (grain)

1) If there is more than 50% residue cover at planting, use the upper end of the range.

2) For small grains grown on medium and fine textured soils, the mid to low end of the profitable range is the most appropriate.

3) If 100% of the N will come from organic sources, use the top end of the range. In addition, up to 20 lb N/a in starter fertilizer may be applied in this situation. 4) For medium and fine textured soils with 10% or more organic matter, use the low end of the range; for medium and fine textured soils with less than 2%

organic matter, use the high end of the range.

5) If there is a likelihood of residual N, then use the low end of the range or use the high end of the range and subtract preplant nitrate test (PPNT) credits. 6) For corn following small grains on medium and fine textured soils, the middle to low end of the range is most appropriate

For more information on the new N application rate guidelines for corn see http://uwlab.soils.wisc.edu/pubs/MRTN/

ADDITIONAL INFORMATION

Lime recommendation may not achieve desired pH in 3 years. Retest then and apply as recommended

If lime has been applied in the last two years, more lime may not be needed due to incomplete reaction.

Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer

This soil should be monitored more closely because it has a relatively low potassium buffering capacity.

Starter fertilizer (e.g. 10+20+20 lbs N+P2Os+K2O/a) is advisable for row crops on soils slow to warm in the spring.

Year 1: If corn is harvested for silage instead of grain apply extra 90 lbs K₂O per acre to next crop.

							TEST IN	TERPRE	TATION							
Cropping S	Sequence	Ver	y Low		Low		Optimum			Н	ligh		Very High	i i	E	cessive
Corn, gra	in						PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP									
Soybean,	grain									PPPPPPP KKKKKKK		PPPPPPP	PPPPPPP	PPPPP	PPPPPP	PPPPP
Alfalfa, se	and an	DDD			0000000		DDDDDDD	0000000	DDDDDD	PPPPPPP	PPPPPP	ODDDDDDD	DDDDDDDD		PPPPPP	DDDD
Allalia, Se	eung				KKKKKKK				FFFFF					FFFFF		
	stablished	KKK	KKKKKKK PPPPPPP	PPPPPP	KKKKKKK	KKKKKK PPPPPP	PPPPPP	KKKKKK PPPPPPP		PPPPPPP						
	stablished	PPP KKK	KKKKKKK PPPPPPP	PPPPPP	KKKKKKK PPPPPPP	KKKKKK PPPPPP	PPPPPP	KKKKKK PPPPPPP								
Alfalfa, es	stablished	PPP KKK	KKKKKKK PPPPPPP KKKKKKK	PPPPPP	KKKKKKK PPPPPPP	KKKKKK PPPPPP	KKKKKKI PPPPPPF KKKKKKI	KKKKKK PPPPPPP	PPPPP							
Alfalfa, es	stablished	PPP KKK	KKKKKKK PPPPPPP KKKKKKK	PPPPPP	KKKKKKK PPPPPPP	KKKKKK PPPPPP	KKKKKKI PPPPPPF KKKKKKI	KKKKK PPPPPPP KKKKKK	PPPPP				PPPPPP			

Test Results

TEST INTERPRETATION												
Cropping Sequence	Very Low	Low	Optimum	High	Very High	Excessive						
Corn, grain			PPPPPPPPPPPPPPPPF KKKKKKKKKKKKKKK	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	PPPPPPPPPP						
Soybean, grain			PPPPPPPPPPPPPPPPF KKKKKKKKKKKKKKKK		PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP						
Alfalfa, seeding		PPPPPPPPPPPPPPPPP KKKKKKKKKKKKKKKKK	PPPPPPPPPPPPPPPF KKKKKKKKKKK	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	PPPPPPPPPP						
Alfalfa, established	BILLS SAME MANUFACTURE SUMS BUSINESS	PPPPPPPPPPPPPPPPP KKKKKKKKKKKKKKKKK	PPPPPPPPPPPPPPPF KKKKKKKKKKK	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	PPPPPPPPPP						
Rotation pH	XXXXXXX											

							LABORA	TORY AN	NALYSIS							
Sample Identification	Soil pH	O.M %	Phosphorus ppm	Potassium ppm	60-69 Lime Req (T/a)	Calcium ppm	Magnesium ppm	Est. CEC (cmol/kg)	Boron ppm	Manganese ppm	Zinc	Sulfate-Sulfur ppm	Sulfur Avail. Index	Texture Code	Sample Density	Buffer pH
1	6.0	1.9	34	128	36.8									2	1.00	5.6
Adjusted	6.0	19	34	128												

Graph: Soil test P and K levels for each crop

Rotation pH

Table: Raw result values

Questions?

Robert Florence

Rflorence@wisc.edu

715-387-2523 x 13

Lab Director
UW- Soil and Forage Analysis Lab
2611 Yellowstone Dr.
Marshfield, WI 54449

